SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation

نویسندگان

  • Harley M Smith
  • Brady P Smith
  • Norma B Morales
  • Sam Moskwa
  • Peter R Clingeleffer
  • Mark R Thomas
چکیده

Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX MassARRAY genotyping.

Tragopogon miscellus (Asteraceae) is an evolutionary model for the study of natural allopolyploidy, but until now has been under-resourced as a genetic model. Using 454 and Illumina expressed sequence tag sequencing of the parental diploid species of T. miscellus, we identified 7782 single nucleotide polymorphisms that differ between the two progenitor genomes present in this allotetraploid. Va...

متن کامل

IDENTIFICATION OF MOLECULAR MARKERS LINKED TO LEAF CURL VIRUS DISEASE RESISTANCE IN COTTON

The identification of molecular markers linked to leaf curl virus (CLCuV) disease resistance in cotton has the potential to improve both the efficiency and the efficacy of selection in cotton breeding programs. Genetic analysis suggested that CLCuV resistance is controlled by a single dominant gene. In this study, an interspecific F2 population derived from a cross of Gossypium barbadense and G...

متن کامل

Biological Control of African Violets Root-Knot Disease by the Used of Extracellular Protease Bacillus

The present study explored the efficacy of Bacillus spp. and protease production for biocontrol of the root-knot nematode Meloidogyne javanica in African violet media. Among 100 bacterial isolates from various soils, the highest nematode mortality was observed for treatments with isolate GM-18, which was identified as Bacillus subtilis based on cultural and morphological characteristics and 16S...

متن کامل

Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3.

Inoculation of the grapevine (Vitis amurensis Rupr.) with the arbuscular mycorrhizal (AM) fungus Glomus versiforme significantly increased resistance against the root-knot nematode (RKN) Meloidogyne incognita. Studies using relative quantitative reverse transcription-PCR (RQRT-PCR) analysis of grapevine root inoculation with the AM fungus revealed an up-regulation of VCH3 transcripts. This incr...

متن کامل

Green Nanoparticles Engineering on Root-knot Nematode Infecting Eggplant plants and Their Effect on Plant DNA Modification

Background: Root-knot nematodes are known to cause significant damage to eggplants. New approaches by green silver nanoparticles (GSN) are used to control plant-parasitic nematode to avoid chemical nematicide hazards.Objectives: Analyses of the incorporation of different concentrations of nanoparticles on two different algae (Ulva lactuca and Turbinaria turbinata) were carried out. Fureth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018